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Abstract
The master equation  is rarely exactly solvable and hence various means of 
approximation have been devised. A popular systematic approximation method 
is the system-size expansion which approximates the master equation  by 
a generalised Fokker–Planck equation. Here we first review the use of the 
expansion by applying it to a simple chemical system. The example shows 
that the solution of the generalised Fokker–Planck equation obtained from the 
expansion is generally not positive definite and hence cannot be interpreted as 
a probability density function. Based on this observation, one may also a priori 
conclude that moments calculated from the solution of the generalised Fokker–
Planck equation are not accurate; however calculation shows these moments to 
be in good agreement with those obtained from the exact solution of the master 
equation. We present an alternative simpler derivation which directly leads to 
the same moments as the system-size expansion but which bypasses the use 
of generalised Fokker–Planck equations, thus circumventing the problem with 
the probabilistic interpretation of the solution of these equations.
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List of acronyms

SSA stochastic simulation algorithm
SSE system-size expansion
LNA linear-noise approximation
GFPE generalised Fokker–Planck equation
CME chemical master equation

1. Introduction

The Markovian description of stochastic systems with discrete state space is generally 
described by means of a master equation [1]. The solution of the latter gives the probability 
that the system of interest is in a given configuration at a given time. However, exact solution 
of the master equation is rarely possible because of the typically large (or infinite) dimension-
ality of the state space. The most common strategy to bypass this difficulty involves the use 
of stochastic simulations via the stochastic simulation algorithm (SSA) [2] or one of its sev-
eral variants. However, such simulations can easily become computationally expensive when 
modelling realistic systems, thus making analytical approximation procedures an appealing 
alternative.

One of the most well-known approximation methods is van Kampen’s system-size expan-
sion (SSE) [1], a perturbative expansion of the master equation in the inverse system size, for 
systems which are deterministically monostable. In the limit of infinitely large system sizes, 
consideration of the leading order terms of the SSE shows that the mean concentrations of the 
master equation agree with those of the deterministic rate equations, while the distribution of 
fluctuations about the mean is Gaussian and given by a Fokker–Planck equation with linear 
drift and diffusion coefficients. The latter is often referred to as the ‘linear-noise approx-
imation’ (LNA) and is widely used in the literature (see for example [1, 3–5]). Consideration 
of higher orders of the expansion lead to generalised Fokker–Planck equations (GFPE) with 
third or higher order derivatives [6]. These higher-order terms have recently been used [7–11] 
to compute corrections to the mean concentration solution of the rate equations and to the 
second moments given by the LNA (for a review of these results see [12]). These corrections 
are applicable when the system size is of intermediate size. Although they are computationally 
advantageous and typically highly accurate when compared to stochastic simulations [13–15], 
the GFPE from which they are computed has been subject to strong criticisms. Pawula’s 
theorem [16, 17] states that the solution of the GFPE is a positive quantity only if the GFPE 
has at most second-order derivatives or else if the GFPE has an infinite number of terms. In 
other words, while the solution of the Fokker–Planck equation associated with the LNA can 
be interpreted as a probability density function, the solution of the GFPE with third or higher 
derivatives can not be so interpreted. Thus the moments computed from such an equation are 
dubious. Based on such arguments one may dismiss any SSE computations beyond the LNA 
[18]. Hence the dilemma: why are the moments calculated using higher-order terms beyond 
the LNA quantitatively accurate despite being derived from a GFPE which has no apparent 
meaningful probabilistic interpretation? 

In this paper, we propose a novel method, which leads to the same moment equations as 
obtained using the GFPE with third and higher-order derivatives derived from the SSE, but 
which avoids the problems outlined above. In particular, the method relies on an expansion of 
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the moment equations directly obtained from the master equation and hence bypasses the use 
of a time-evolution equation for the approximate probability density function. To be specific, 
we shall consider a general chemical reaction system containing different species interacting 
via a number of chemical reactions in a well-mixed volume. In this context the master equa-
tion is known as the ‘chemical master equation’ (CME) and the system size corresponds to 
the volume of the compartment in which the reactions occur. We emphasise however that all 
results derived in this paper also apply to master equations that allow a SSE but are not of 
CME type (see for example [19, 20]).

This paper is structured as follows. In section 2 we introduce a simple, instructive one vari-
able example and show that while the solution of the corresponding GFPE with up to fourth- 
and sixth-order derivatives can become negative, the moments calculated from such a solution 
are highly accurate, thereby illustrating the aforementioned dilemma. In section 3, we present 
the general derivation of the SSE leading to a GFPE with up to fourth-order derivatives for 
a general multi-species chemical system. In section 4 we present our new expansion method 
starting directly from the moment equations of the CME and which bypass the use of any type 
of GFPE. Subsequently in section 5 we show that the equations from the conventional SSE 
derivation of section 3 match exactly the equations derived from the alternative method in  
section 4. Finally, we briefly summarize our results and conclude in section 6.

2. An illustrative one species example

In order to demonstrate the probabilistic interpretation problem of GFPEs, we consider the 
following simple chemical reaction system:

∅ k1→X, X + X
k2→∅. (1)

The species X gets created at rate k1 and irreversibly forms dimers with rate k2 (which we do 
not follow and hence we do not label). The corresponding CME is given by:

∂tP(n, t) = Ω

[(
E−1 − 1

)
k1 +

(
E2 − 1

) k2

Ω2 n(n − 1)
]

P(n, t), (2)

where P(n, t) is the probability of n particles of X being in the system at time t, E±x are the 
step operators that replace n with n ± x, i.e. E±xf (n) = f (n ± x) for a function f (n), and Ω is 
the volume of the compartment. The SSE makes the ansatz [1]:

n
Ω

= φ+
ε√
Ω

, (3)

where φ is the solution of the deterministic rate equations. We thus divide the concentration 
n/Ω into a deterministic contribution φ and a contribution ε which provides corrections to the 
latter. The corresponding deterministic rate equations are given by:

∂tφ = k1 − 2k2φ
2. (4)

The ansatz in (3) effectively leads to a change of variables from n to ε. We thus have to trans-
form from the distribution P(n, t) over n to a new distribution Π(ε, t) over ε. Performing the 
transformation in variables on the CME (2) and taking the limit of large Ω (see [8] for techni-
cal details of the general procedure), one finds that the CME in equation (2) can be approxi-
mated by the GFPE:

C Cianci et alJ. Phys. A: Math. Theor. 50 (2017) 395003
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∂Π(ε, t)
∂t

= Ω0
[

1
2
(k1 + 4k2φ

2)
∂2Π(ε, t)

∂ε2 + 4k2φ
∂

∂ε
(εΠ(ε, t))

]

+Ω−1/2
[
−1

6
(k1 − 8k2φ

2)
∂3Π(ε, t)

∂ε3 + 4k2φ
∂2

∂ε2 (εΠ(ε, t))

−2k2φ
∂Π(ε, t)

∂ε
+ 2k2

∂

∂ε
(ε2Π(ε, t))

]

+Ω−1
[

1
24

(k1 + 24k2φ
2)
∂4Π(ε, t)

∂ε4 +
8
3

k2φ
∂3(εΠ(ε, t))

∂ε3 − 2k2
∂2Π(ε, t)

∂ε2 φ

+2k2
∂2

∂ε2 (ε
2Π(ε, t))− 2k2

∂

∂ε
(εΠ(ε, t))

]

+Ω−3/2
[
−2k2

∂2

∂ε2 (εΠ(ε, t)) +
4
3

k2
∂3

∂ε3 (ε
2Π(ε, t))− 4

3
k2φ

∂3

∂ε3 (Π(ε, t))

+
4k2φ

3
∂4

∂ε4 (εΠ(ε, t))− 1
120

(k1 + (−2)5k2φ
2)

∂5

∂ε5 Π(ε, t)
]

+Ω−2
[

1
6!
(k1 + 26k2φ

2)
∂6

∂ε6 Π(ε, t) +
1
5!

26k2φ
∂5

∂ε5 (εΠ(ε, t))

+
1
4!

24k2
∂4

∂ε4 ((ε
2 − φ)Π(ε, t))− 1

3!
23k2

∂3

∂ε3 (εΠ(ε, t))
]
+ O(Ω−5/2).

 

(5)

Note that truncating terms on the right hand side of the above equation to order Ω0 leads to 
the LNA, a Fokker–Planck equation with a drift term linear in ε and a diffusion coefficient 
which is independent of ε. This equation admits a Gaussian solution for the distribution of 
fluctuations about the solution of the rate equations. A closed formula for the non-Gaussian 
solution of the GFPE for any deterministically monostable single species system, truncated 
to any order, has been derived recently [14]. Applying this general formula, we find that the 
steady-state solution of the GFPE in equation (5) is given by:

Π(ε) = π0(ε)(1 +

4∑
j=1

Ω−j/2
3j∑

m=1

a( j)
m ψm(ε)) + O(Ω−5/2). (6)

The first term π0(ε) is the Gaussian solution of the LNA and reads:

π0(ε) =
1√

2πσ2
exp

(
− ε2

2σ2

)
, (7)

where σ2 = 3
4φs and φs =

√
k1/2k2 . The latter is the steady-state solution of the rate equa-

tion in (4). The corrections beyond the LNA in (6) are given in terms of the functions ψm(ε) 
which are proportional to Hermite polynomials Hm as follows:

ψm(ε) =
1
σm Hm

(
ε

σ

)
. (8)

The non-vanishing coefficients a(i)
m  in equation (6) read:

C Cianci et alJ. Phys. A: Math. Theor. 50 (2017) 395003
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a(1)
1 = 1

8 , a(1)
3 = 7

96φs,

a(2)
2 = 5

128 , a(2)
4 = 23

1536φs, a(2)
6 = 49

18 432φ
2
s ,

a(3)
1 = 3

128φs
, a(3)

3 = 13
3072 , a(3)

5 = 37
10 240φs, a(3)

7 = 7
9216φs, a(3)

9 = 343
5308 416φ

3/2
s ,

a(4)
2 = 3

2048φs
, a(4)

4 = − 13
98 304 , a(4)

6 = 2089
2949 120φs, a(4)

8 = 4171
23 592 960φ

2
s , a(4)

10 = 2009
84 934 656φ

3/2
s , a(4)

12 = 2401
2038 431 744φ

4
s .

 
(9)

Figure 1 shows the solutions to the GFPE given in equation  (6) truncated to orders Ω0 
(red), Ω−1 (blue) and Ω−2 (orange). The latter correspond to the GFPE with at most second-, 
fourth- and sixth-order derivatives, respectively. Note that figure 1 shows distributions in the 
variable n, which is obtained by reversing the transformation of variables from distributions in 
ε to distributions over the variable n .

Note that truncating the GFPE to higher-order leads to a better agreement of the solution of 
the GFPE with that of the exact solution of the CME for positive n. However this is achieved 
at the expense of negative probabilities for some negative n values (for other examples, such as 
the simple birth-death process, the higher-order GFPE solution leads to negative probabilities 
also for positive n values—see figure 1(a) in [14]). Note that all GFPE’s (including the LNA) 
are not just defined for positive molecule numbers n but also for negative ones. This is in con-
trast to the CME which only allows transitions between positive molecule numbers. However 
for the LNA this is not a major cause of concern since the probability is positive and hence 
the LNA constitutes a stochastic process over the real domain; in contrast, due to negative 
probabilities, the higher-order GFPE’s do not allow a probabilistic interpretation. Curiously, 
however, the means and variances of the continuous GFPE distributions computed over the 
open interval n = (−∞,∞) are found to progressively approach the exact CME value as 

Figure 1. The steady-state solution of the GFPE in (6) obtained by truncating 
van Kampen’s SSE to orders Ω0 (red, LNA), Ω−1 (blue) and Ω−2 (orange) for the 
dimerization reaction system in (1). The grey dots show the exact steady-state solution 
of the CME. The parameters used are k1 = k2 = 1 and Ω = 1. Note that while the LNA 
solution is positive for all n, the higher order solutions (blue, orange) are negative for 
some values of n. Hence while the LNA has a probabilistic interpretation, the higher-
order GFPE solutions do not.

C Cianci et alJ. Phys. A: Math. Theor. 50 (2017) 395003
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we include higher-order derivatives (see table 1). Hence we have a dilemma: despite being 
derived from a distribution that is not positive definite, these moments are closer to the true 
moments of the CME, when compared to the moments calculated from the positive-definite 
distribution of the LNA.

More generally one finds that for a fixed value of the system size Ω, consideration of 
higher-order derivatives of the GFPE leads to more accurate estimates of the moments until a 
certain order, after which the accuracy rapidly decreases; this threshold order increases with 
the system size and hence strictly speaking, the expansion is valid to all orders only in the limit 
Ω → ∞ [21]. This also implies that the SSE is divergent for finite Ω. This is typical of series 
derived from perturbation methods [22]. It is not possible to a priori know the threshold order 
however generally if the addition of a new term leads to either a large relative change in the 
value of a moment or if it leads to a negative value of the average of the molecule numbers 
raised to any power then clearly one should not add further terms to the series.

The accuracy of moments computed from higher order truncations of the GFPE (below the 
threshold order) leads one to surmise that it may be possible to derive them using an approach 
which bypasses the use of the GFPE and hence the knotty issue of negative probabilities. The 
rest of this paper is dedicated to derive such an approach.

3. The system-size expansion for a general chemical system

We start by reviewing the derivation of the SSE to higher orders introduced in [7]. Consider a 
system of N chemical species that interact through a set of R chemical reactions where the rth 
reaction has the form:

s1rX1 + ... + sNrXN
kr→ h1rX1 + ... + hNrXN . (10)

Here the index r takes values between 1 and R, and Xi denotes species i, i = 1, ..., N . The inte-
gers sir and hir are the stoichiometric coefficients and kr  is the macroscopic reaction rate. We 
can write the corresponding CME in compact form using step operators as [1]:

∂tP(�n, t) = Ω

R∑
r=1

( N∏
i=1

E−Sir
i − 1

)
fr(�n,Ω)P(�n, t), (11)

where �n = (n1, ..., nN), ni is the molecule number of species Xi, Ex
i  is a step operator returning 

fr(�n,Ω)P(�n, t) but with ni replaced by ni + x , and we have defined the stoichiometric matrix 
Sir = hir − sir. The microscopic rate function fr(�n,Ω) depends on the type of the rth chemical 
reaction. The probability that a reaction occurs in a time interval [t, t + dt) somewhere in the 
volume Ω is given by Ωfr(�n,Ω)dt .

Table 1. Comparison of the mean and variance in molecule numbers calculated from 
the exact CME distribution and the solutions of the GFPE truncated to orders Ω0 (LNA), 
Ω−1 and Ω−2 (the orders of Ω−1/2 and Ω−3/2 do not contribute to the moments). 
Parameters are as in figure 1 where we also show the corresponding distributions. Note 
that the mean and variance become more accurate with increasing order. The exact 
values are computed using formulae (68) and (69) in [7].

Exact Ω0 Ω−1 Ω−2

Mean 0.888 0.707 0.832 0.865
Variance 0.600 0.530 0.593 0.601

C Cianci et alJ. Phys. A: Math. Theor. 50 (2017) 395003
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We assume mass action kinetics, and specifically we consider reactions involving at most 
two reactant molecules, i.e. 

∑N
i=1 sir � 2 ∀r, since reactions involving three or more mol-

ecules are relatively rare. This means that we can write the functions fr(�n, t) in (11) in the 
following form:

Ωfr(�n,Ω) =
[
∆rΩ+

N∑
k′=1

βk′
r nk′ +

N∑
k′,s=1,s�=k′

γk′s
r

Ω
nk′ns +

N∑
k′=1

ζk′k′
r

Ω
nk′(nk′ − 1)

]
,

 

(12)

where we explicitly split up the term into contributions from different types of possible reac-
tions. The first and second term represent zeroth and first order (unimolecular) reactions, 
respectively. The third term corresponds to a second order (bimolecular) reaction, where the 
two reactant molecules are of different type, while the last term corresponds to a bimolecular 
reaction involving two identical reactant molecules. Note that for a given reaction r, only one 
of the coefficients ∆r,βk′

r , γk′s
r  and ζk′k′

r  in equation (12) is non-zero, depending on the type of 
reaction, and it is equal to kr.

To derive the SSE equations one makes the following ansatz:

ni

Ω
= φi +

εi√
Ω

, i = 1, . . . , N. (13)

Note that this is the same ansatz that we made in equation (3) for the single species system, but 
this time it is applied to the concentrations of each species. The φi are the solution of the deter-
ministic rate equations. Next, we transform the CME in equation (11) from the variables �n  to 
the variables �ε , leading to a GFPE for the distribution Π(�ε, t). In order to perform this trans-
formation, we transform the time derivative, expand the step operators Ex

i  in powers of Ω−1/2 
(for the explicit expression see [7]) and transform the functions fr accordingly. This leads to:

∂Π(�ε, t)
dt

− Ω1/2
N∑

i=1

dφi

dt
∂Π(�ε, t)
∂εi

= −Ω1/2
N∑

i=1

R∑
r=1

Sirfr(�φ)
∂Π(�ε, t)
∂εi

+

∞∑
i=0

Ω−i/2L(i)Π(�ε, t),

 (14)
where L(i) are differential operators—the reader is referred to [6] for their explicit definitions.

Now by the law of mass action, one can deduce that the deterministic rate equations for the 
system (10) are:

dφi

dt
=

R∑
r=1

Sirfr(�φ),

fr(�φ) = lim
Ω→∞

fr(�n = Ω�φ,Ω) = ∆r +

N∑
k′=1

βk′
r φk′ +

N∑
k′,s=1,s�=k′

γk′s
r φk′φs +

N∑
k′=1

ζk′k′
r φ2

k′ ,

 
(15)

where �φ  is the vector of macroscopic concentrations and fr(�φ) is the macroscopic rate func-
tion of the rth reaction. In the macroscopic limit, terms of order Ω1/2 in equation (14) domi-
nate. However by the assumption that the CME must agree with the rate equations  in the 
macroscopic limit, one finds that terms of order Ω1/2 on both sides of the transformed CME 
disappear. Hence the transformed CME equation (14) reads:

∂Π(�ε, t)
dt

=
(
Ω0L(0) +Ω−1/2L(1) +Ω−1L(2)

)
Π(�ε, t) + O(Ω−3/2). (16)

The form of the transformed CME in equation (16) suggests the perturbative solution:

C Cianci et alJ. Phys. A: Math. Theor. 50 (2017) 395003
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Π(�ε, t) =
∞∑

j=0

Πj(�ε, t)Ω−j/2. (17)

Substitution of this ansatz in equation (16) and collecting terms of equal orders leads to time-
evolution equations for Πj(�ε, t). From these equations we can subsequently obtain time-evo-
lution equations for the pseudo-moments [εkεm...εr]j =

∫
d�ε εkεm...εrΠj(�ε, t).

Finally the equations  of the moments of the concentrations are obtained from the van 
Kampen ansatz in equation (13) and are given by:

〈ni

Ω

〉
= φi +

〈εi〉√
Ω

= φi +

3∑
j=0

[εi]jΩ
−( j+1)/2, (18)

〈ni

Ω

nl

Ω

〉
= φiφl +

φi〈εl〉+ φl〈εi〉√
Ω

+
〈εiεl〉
Ω

= φiφl +Ω−1/2(φi[εl]0 + [εi]0φl) + Ω−1([εiεl]0 + φi[εl]1 + φl[εi]1)

+ Ω−3/2([εiεl]1 + φi[εl]2 + φl[εi]2) + Ω−2([εiεl]2 + φi[εl]3 + φl[εi]3),
 

(19)

〈ninknl

Ω3

〉
= φiφkφl +Ω−1/2

(
φkφl[εi]0 + (i ↔ k) + (k ↔ l)

)
+Ω−1

(
φk[εiεl]0 + (k ↔ i) + (i ↔ l)

+ φkφl[εi]1 + (i ↔ k) + (k ↔ l)
)
+Ω−3/2

(
[εkεiεl]0 +

[
φkφl[εi]2 + (i ↔ k) + (k ↔ l)

+ φk[εiεl]1 + (i ↔ k) + (i ↔ l)
])

+Ω−2
(
[εkεiεl]1 +

[
φkφl[εi]3 + (i ↔ k) + (k ↔ l)

+ φk[εiεl]2 + (i ↔ k) + (i ↔ l)
])

,
 

(20)

where we truncated to order Ω−2. Note that the short hand notation (i ↔ k) stands for all the 
expressions of the same form as the one proceeding the notation but with i and k interchanged. 
For example φkφl[εi]0 + (i ↔ k) + (k ↔ l) implies φkφl[εi]0 + φiφl[εk]0 + φiφk[εl]0.

Note that here we used the fact that:

〈εkεm . . . εr〉 =
∫

d�ε εkεm...εrΠ(�ε, t) =
∞∑

j=0

Ω−j/2[εkεm . . . εr]j, (21)

which follows from equation (17) and the definition of the pseudo-moments given below it. 
This procedure can also be generalized to chemical systems with non-mass action kinetics and 
those reactions involving three or more reactant molecules [13].

In what follows, we shall use the Einstein summation convention where all twice repeated 
indices in product terms are understood to be summed over 1 to N. This notation will be used 
throughout the paper when it is necessary to write equations in compact form. To simplify the 
presentation, we define the following coefficients:

J pt...z
ij...w =

∂

∂φp

∂

∂φt
...

∂

∂φz
Jij...w,

Jij...w =

R∑
r=1

SirSjr . . . Swrfr(�φ).
 

(22)
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Because of the quadratic form of fr(�φ) (which stems from allowing at most bimolecular reac-
tions), the only non-zero J coefficients are those involving at most second-order derivatives, 
i.e. those with at most two superscripts. These are:

J p
ij...w =

R∑
r=1

SirSjr . . . Swr

[ N∑
k′=1

βk′
r δk′,p +

N∑
k′,s=1,s�=k′

γk′s
r (φsδk′,p + φk′δs,p) +

N∑
k′=1

2ζk′k′
r φk′δk′,p

]
,

J pt
ij...w =

R∑
r=1

SirSjr . . . Swr

[ N∑
k′,s=1,s�=k′

γk′s
r (δk′,pδs,t + δs,pδk′,t) +

N∑
k′=1

2ζk′k′
r δk′,pδk′,t

]
,

 

(23)

where δk′,p is the Kronecker delta.
The time-evolution equations  for the pseudo-moments [.]j are needed to compute the 

moments in concentrations. These equations are obtained as detailed just before equation (18) 
and can be found in the appendix.

In summary, the estimates of the first, second and third moments of the concentrations 
up to order Ω−2 according to the SSE are generally given by equations (18)–(20) together 
with the solution of the closed set of differential equations given by equations (A.1)–(A.10). 
Equations for the fourth and higher-order moments in the concentrations can be derived simi-
larly. For more details on the derivation we refer the reader to [7, 13].

4. An alternative route

As we saw in the last section, the final output of the SSE as given by equations (18)–(20) 
is a series expansion of the moments in powers of Ω−1/2. The open question is whether 
this expansion is accurate given that it is derived from the GFPE in equation (16) which 
has higher than second-order derivatives and hence admits no probabilistic interpretation 
according to Pawula’s theorem. To solve this apparent issue, we next formulate an alterna-
tive derivation which relies on a direct expansion of the moment equations obtained from 
the CME in the inverse system size, thereby avoiding the use of a GFPE. The procedure is 
as follows.

The moment equations are obtained by multiplying the CME in equation (11) on both sides 
with ni . . . nl and subsequently summing over all allowed values of the molecule numbers. The 
moment equations of the first four moments read:

∂t
〈ni〉
Ω

=
R∑

r=1

Sir〈 fr(�n,Ω)〉, (24)

∂t
〈nink〉
Ω2 = Ω−1

R∑
r=1

Skr〈ni fr(�n,Ω)〉+ Sir〈nk fr(�n,Ω)〉+ SkrSir〈 fr(�n,Ω)〉, 

(25)

∂t
〈ninknl〉

Ω3 = Ω−2
R∑

r=1

[Skr〈ninl fr(�n,Ω)〉+ (k ↔ i) + (i ↔ l)]

+ [SirSkr〈nl fr(�n,Ω)〉+ (l ↔ k) + (k ↔ i)] + SkrSirSlr〈 fr(�n,Ω)〉,
 

(26)
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∂t
〈ninknlnm〉

Ω4 = Ω−3
R∑

r=1

[Skr〈ninlnm fr(�n,Ω)〉+ (k ↔ i) + (i ↔ l) + (l ↔ m)]

+ [SirSkr〈nlnm fr(�n,Ω)〉+ (i ↔ m) + (k ↔ l) + (l ↔ i)]

+ [SirSkrSlr〈nm fr(�n,Ω)〉+ (m ↔ i) + (i ↔ l) + (l ↔ k)]

+ SkrSirSlrSmr〈 fr(�n,Ω)〉,
 

(27)

where fr(�n,Ω) is the microscopic rate function as defined in equation (12). We now assume 
that the moments can be written as a series in powers of Ω−1/2. For the first three moments, 
for instance, we write

〈ni

Ω

〉
=

4∑
j=0

αi
jΩ

−j/2,
〈ni

Ω

nk

Ω

〉
=

4∑
j=0

ρik
j Ω

−j/2,
〈ni

Ω

nk

Ω

nl

Ω

〉
=

4∑
j=0

λikl
j Ω−j/2,

 (28)
where we introduced the coefficients α, ρ and λ. Note that we have here omitted terms of 
higher order than Ω−2. The subscripts and superscripts indicate expansion orders and species 
indices, respectively. Substituting equations (28) into (24) and equating equal order terms on 
both sides of the equation, one obtains:

∂

∂t
αi

j =
R∑

r=1

Sir[δj,0∆r +
N∑

k′=1

βk′
r αk′

j +
N∑

k′,s=1,s�=k′
γk′s

r ρk′s
j +

N∑
k′=1

ζk′k′
r (ρk′k′

j − αk′
j−2)], j = 0, .., 4,

 (29)

where δi,j  is the Kronecker delta and αk′
j = 0 if j < 0. Similarly, one can obtain equations for 

the coefficients of higher order moments. For instance substituting equations (28) into (25) 
and equating equal order terms on both sides of the equation, we obtain time-evolution equa-
tions for the coefficients ρik

j  of the second order moments:

∂tρ
ik
j =

R∑
r=1

[
Skr∆r(α

i
j) + Sir∆r(α

k
j )
]
+

R∑
r=1

N∑
k′=1

[
Skrβ

k′
r (ρik′

j ) + Sirβ
k′
r (ρkk′

j )
]

+

R∑
r=1

N∑
k′,s=1,s�=k′

[
Skrγ

k′s
r (λik′s

j ) + Sirγ
k′s
r (λkk′s

j )
]
+

R∑
r=1

N∑
k′=1

[
Skrζ

k′k′
r (λik′k′

j )

+ Sirζ
k′k′
r (λkk′k′

j )
]
−

R∑
r=1

N∑
k′=1

[
Skrζ

k′k′
r (ρik′

j−2) + Sirζ
k′k′
r (ρkk′

j−2)
]

+
R∑

r=1

N∑
k′=1

SkrSir

[
∆rδj,2 + βk′

r (αk′
j−2) +

N∑
s=1,s�=k′

γk′s
r (ρk′s

j−2)

+ ζk′k′
r (ρk′k′

j−2 − αk′
j−4)

]
, j = 0, .., 4.

 

(30)

Note that it is here understood that ρks
j = 0 if j < 0. Equations for the coefficients of third 

and higher order moments can be similarly derived. As we will show in the following section, 
equations (29) and (30) agree exactly with the ones obtained in the previous section using the 
conventional SSE.
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5. Equivalence of the two methods

Comparing equation (28) with (18)–(20) one obtains the following relationship between the 
coefficients of the system-size expansion and of the alternative method:

αi
0 = φi, αi

j+1 = [εi]j, 0 � j � 3

ρik
0 = αi

0α
k
0, ρik

1 = αi
1α

k
0 + αi

0α
k
1, ρik

j+2 = [εiεk]j + αi
0α

k
j+2 + αk

0α
i
j+2, 0 � j � 2

λikl
0 = αi

0ρ
kl
0 , λikl

1 = αi
1ρ

kl
0 + (i ↔ k) + (k ↔ l), λikl

2 = [αi
0ρ

kl
2 − αi

2ρ
kl
0 ] + (i ↔ k) + (k ↔ l),

λikl
j+3 = [εiεkεl]j + [αi

0ρ
kl
j+3 − ρkl

0 α
i
j+3 + (i ↔ k) + (k ↔ l)], 0 � j � 1.

 (31)
Equivalence of the two methods is then proved if, given these relations, we can obtain the 
time-dependent equations for the coefficients of the alternative method, i.e. equations (29) and 
(30), by starting from the time-dependent equations for the coefficients of the SSE, i.e. equa-
tions (A.1)–(A.10). This is what we seek to establish next.

5.1. Equivalence at the deterministic level

It follows directly from the previous relations that the deterministic rate equations given by 
equations (15) correspond to (29) with j = 0.

5.2. Equivalence at the first moment level

We start by recalling the time evolution equation  for [εi]j′ derived using the SSE (see 
equations (A.1)–(A.4)):

∂

∂t
[εi]j′ = Jw

i [εw]j′ +
[1

2
Jwp

i [εwεp]j′−1 −
1
2

Jww
i (φwδj′,1 + [εw]j′−2(1 − δj′,1))

]
(1 − δj′,0),

 (32)
where j′ = 0, . . . 3. Inserting the relations in equation (31) in the above equation, one obtains:

∂

∂t
αi

1 = Jw
i α

w
1 , j′ = 0, (33)

∂

∂t
αi

2 = Jw
i α

w
2 +

1
2

Jwp
i (ρwp

2 − (αw
0 α

p
2 + αw

2 α
p
0 ))−

1
2

Jww
i αw

0 , j′ = 1, (34)

∂

∂t
αi

3 = Jw
i α

w
3 +

1
2

Jwp
i (ρwp

3 − (αw
0 α

p
3 + αw

3 α
p
0 ))−

1
2

Jww
i αw

1 , j′ = 2, (35)

∂

∂t
αi

4 = Jw
i α

w
4 +

1
2

Jwp
i (ρwp

4 − (αw
4 α

p
0 + α p

4 α
w
0 ))−

1
2

Jww
i αw

2 , j′ = 3. (36)

The next step is to substitute the explicit expression of the matrices J as given by equation (23). 
This leads to the equations:

C Cianci et alJ. Phys. A: Math. Theor. 50 (2017) 395003



12

∂

∂t
αi

1 =

R∑
r=1

N∑
k′=1

Sir

(
βk′

r αk′
1 + ζk′k′

r ρk′k′
1 +

N∑
s=1,s�=k′

γk′s
r ρk′s

1

)
,

∂

∂t
αi

2 =

R∑
r=1

N∑
k′=1

Sir

(
βk′

r αk′
2 +

N∑
s=1,s�=k′

γk′s
r ρk′s

2 + ζk′k′
r (ρk′k′

2 − αk′
0 )

)
,

∂

∂t
αi

3 =

R∑
r=1

N∑
k′=1

Sir

(
βk′

r αk′
3 +

N∑
s=1,s�=k′

γk′s
r ρk′s

3 + ζk′k′
r (ρk′k′

3 − αk′
1 )

)
,

∂

∂t
αi

4 =

R∑
r=1

N∑
k′=1

Sir

(
βk′

r αk′
4 +

N∑
s=1,s�=k′

γk′s
r ρk′s

4 + ζk′k′
r (ρk′k′

4 − αk′
2 )

)
.

 

(37)
These are exactly the same as equation (29) with j = 1, . . . , 4.

5.3. Equivalence at the second moment level

Using the SSE we previously derived the expression for [εiεk]0 which is given by:

∂

∂t
[εiεk]0 = Jw

i [εwεk]0 + (i ↔ k) + Jik. (38)

Writing [εiεk]0 and [εwεk]0 in terms of the new coefficients using equation (31), we obtain:

∂

∂t
(ρik

2 − (αi
0α

k
2 + αi

2α
k
0)) = [Jw

i (ρ
wk
2 − (αw

0 α
k
2 + αw

2 α
k
0)) + (i ↔ k)] + Jik.

 (39)
This equation can be expanded as:

∂

∂t
ρik

2 = αk
2
∂

∂t
αi

0 + αi
0
∂

∂t
αk

2 + αi
2
∂

∂t
αk

0 + αk
0
∂

∂t
αi

2 + [Jw
i (ρ

wk
2 − (αw

0 α
k
2 + αw

2 α
k
0)) + (i ↔ k)] + Jik.

 (40)
Next, we substitute the time derivative of αi

k (which we derived earlier and is given by equa-
tion (37)) in the right hand side of the above equation, leading to:

∂

∂t
ρik

2 = αk
2

( R∑
r=1

N∑
k′=1

Sir

(
∆r + βk′

r αk′
0 +

N∑
s=1,s�=k′

γk′s
r ρk′s

0 + ζk′k′
r ρk′k′

0

))

+ αi
0

( R∑
r=1

N∑
k′=1

Skr

(
βk′

r αk′
2 +

N∑
s=1,s�=k′

γk′s
r ρk′s

2 + ζk′k′
r (ρk′k′

2 − αk′
0 )

))

+ αi
2

( R∑
r=1

N∑
k′=1

Skr

(
∆r + βk′

r αk′
0 +

N∑
s=1,s�=k′

γk′s
r ρk′s

0 + ζk′k′
r ρk′k′

0

))

+ αk
0

( R∑
r=1

N∑
k′=1

Sir

(
βk′

r αk′
2 +

N∑
s=1,s�=k′

γk′s
r ρk′s

2 + ζk′k′
r (ρk′k′

2 − αk′
0 )

))

+ [Jw
i (ρ

wk
2 − (αw

0 α
k
2 + αw

2 α
k
0)) + (i ↔ k)] + Jik.

 
(41)

To write the final explicit equation for ρik
2 , one needs to insert the expressions for the J matri-

ces given by equations (22) and (23). After some algebraic manipulation most of the terms 
inside the expression cancel leading to the final form:
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∂tρ
ik
2 =

R∑
r=1

[
Skr∆r(α

i
2) + Sir∆r(α

k
2)
]
+

R∑
r=1

N∑
k′=1

[
Skrβ

k′
r (ρik′

2 ) + Sirβ
k′
r (ρkk′

2 )
]

+

R∑
r=1

N∑
k′,s=1,s�=k′

[
Skrγ

k′s
r (λik′s

2 ) + Sirγ
k′s
r (λkk′s

2 )
]
+

R∑
r=1

N∑
k′=1

[
Skrζ

k′k′
r (λik′k′

2 )

+ Sirζ
k′k′
r (λkk′k′

2 )
]
−

R∑
r=1

N∑
k′=1

[
Skrζ

k′k′
r (ρik′

0 ) + Sirζ
k′k′
r (ρkk′

0 )
]

+
R∑

r=1

N∑
k′=1

SkrSir

[
∆r + βk′

r (αk′
0 ) +

N∑
s=1,s�=k′

γk′s
r (ρk′s

0 ) + ζk′k′
r (ρk′k′

0 )
]
,

 

(42)

where we used the expressions for the λ coefficients given in equation (31). Note that equa-
tion (42) is precisely one and the same as equation (30) with j = 2.

By a completely analogous derivation to the one above, starting from the SSE time- 
evo lution equations for [εiεk]1 and [εiεk]2 as given by equations (A.6) and (A.7), one can derive 
equation (30) with j = 3 and j = 4, respectively.

Hence in summary we have here proved that the SSE equations for the first two moments 
of the concentrations up to order Ω−2 are precisely the same as those obtained from the alter-
native route. The algebra becomes formidable to perform by hand for third and higher-order 
moments and for higher powers in Ω, but we have carried this out with Mathematica and have 
verified agreement of the SSE and the alternative method for these cases as well.

We finish this section  by noting the difference between our method and moment-closure 
approximations [12, 23–26]. Essentially the latter close moment equations  by postulating an 
underlying distribution such as Gaussian or log-normal but in contrast in our method no such arti-
ficial closure is used. Rather the equations for the moments close by themselves due to the nature 
of the perturbation expansion. Hence our procedure is unique and does not suffer from the ad-hoc 
nature of moment-closure approximations. A comparison of the SSE (to which our method is 
formally equivalent) and of common moment-closure approximations can be found in [27].

6. Summary and conclusion

In this paper we have introduced a novel way to approximately calculate the moments of con-
centrations in the chemical master equation. This approach is useful when traditional exact 
methods become computationally demanding, e.g. when one is using the Gillespie algorithm 
and the number of reactions fired per unit time is large or when one is directly solving the 
CME equations and the transition matrix has a large dimensionality. Our approach developed 
in section 4 is based on a Taylor series expansion of the moments of molecule numbers in 
powers of a small parameter—the inverse square root of the system size. Substituting this 
expansion in the exact equations for the moments derived from the CME, one obtains time-
evolution equations for the coefficients of the Taylor series. We showed in section 5 that this 
approach leads to the same result as the SSE (stated in general in section 3), but in a much 
simpler and straightforward way. Our approach has one further and most important advantage: 
unlike the SSE, the moments are not calculated from a GFPE with third and higher-order 
coefficients and hence it circumvents the problem with the probabilistic interpretation of the 
GFPE. The fact that it nevertheless agrees with the SSE does prove that the latter is a trustwor-
thy device to approximate the moments.

C Cianci et alJ. Phys. A: Math. Theor. 50 (2017) 395003



14

Acknowledgments

This work was supported by the Biotechnology and Biological Sciences Research Council 
[BB/F017073/1]; the Leverhulme Trust [RPG-2013-171]; and the European Research Council 
[MLCS 306999]. The authors thank thank Philipp Thomas for useful discussions.

Appendix. Time-evolution equations for the pseudo-moments of the SSE

For the computation of the average concentrations up to order Ω−2 we need [εi]j, j = 0, .., 3, 
(see equation (18)) which are given by the equations:

∂

∂t
[εi]0 = Jw

i [εw]0, (A.1)

∂

∂t
[εi]1 = Jw

i [εw]1 +
1
2

Jwp
i [εwεp]0 −

1
2

Jww
i φw, (A.2)

∂

∂t
[εi]2 = Jw

i [εw]2 +
1
2

Jwp
i [εwεp]1 −

1
2

Jww
i [εw]0, (A.3)

∂

∂t
[εi]3 = Jw

i [εw]3 +
1
2

Jwp
i [εwεp]2 −

1
2

Jww
i [εw]1. (A.4)

According to equation (19), for the computation of the second moments of the concentrations 
up to order Ω−2, we need [εi]j, j = 0, .., 3, and [εiεl]j, j = 0, .., 2. The latter are given by the 
equations:

∂

∂t
[εiεk]0 = Jw

i [εwεk]0 + (i ↔ k) + Jik, (A.5)

∂

∂t
[εiεk]1 = Jw

i [εwεk]1 −
1
2

Jww
i [εk]0φw +

1
2

Jwp
i [εwεpεk]0 + (i ↔ k) + Jw

ki[εw]0,
 (A.6)

∂

∂t
[εiεk]2 = Jw

i [εwεk]2 +
1
2

Jwp
i [εwεpεk]1 −

1
2

Jww
i φw[εk]1

− 1
2

Jww
i [εwεk]0 + (i ↔ k) + Jw

ik[εw]1 +
1
2

Jwm
ik [εwεm]0 −

1
2

Jww
ik φw.

 (A.7)
We observe that the equations for [εwεk]1 and [εwεk]2 depend on the zeroth and first order 

coefficients [εwεpεk]0 and [εwεpεk]1 of the third moment whose time-evolution equations are 
given by:

∂

∂t
[εiεkεl]0 = Jw

l [εwεiεk]0 + (l ↔ k) + (k ↔ i) + Jil[εk]0 + (k ↔ i) + (i ↔ l),
 (A.8)

∂

∂t
[εiεkεl]1 = Jw

l [εwεkεi]1 +
1
2

Jwp
l [εwεpεiεk]0 −

1
2

Jww
l φw[εiεk]0 + (l ↔ i) + (i ↔ k)

+ Jil[εk]1 + Jw
il [εwεk]0 + (k ↔ i) + (i ↔ l) + Jikl.

 (A.9)

C Cianci et alJ. Phys. A: Math. Theor. 50 (2017) 395003



15

Note that according to our previously introduced shorthand notation, the terms Jil[εk]0+
(k ↔ i) + (i ↔ l) in equation (A.8) stand for Jil[εk]0 + Jkl[εi]0 + Jki[εl]0.

Finally we note that the last equation  involves the zeroth order coefficient of the fourth 
moment, which satisfies the time-evolution equation:

∂

∂t
[εiεkεlεm]0 = Jw

i [εwεkεlεm]0 + (i ↔ m) + (m ↔ k) + (k ↔ l) + Jim[εkεl]0 + (m ↔ l)

+ (l ↔ k) + (i ↔ m) + (m ↔ l) + (k ↔ m).
 

(A.10)
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