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Plants respond to changes in the environment by triggering a suite of regulatory networks that control and synchronize
molecular signaling in different tissues, organs, and the whole plant. Molecular studies through genetic and environmental
perturbations, particularly in the model plant Arabidopsis thaliana, have revealed many of the mechanisms by which these
responses are actuated. In recent years, mathematical modeling has become a complementary tool to the experimental
approach that has furthered our understanding of biological mechanisms. In this review, we present modeling examples
encompassing a range of different biological processes, in particular those regulated by light. Current issues and future
directions in the modeling of plant systems are discussed.

INTRODUCTION

In the last decade, our understanding of plant systems from the
molecular level to the whole-plant level has increased significantly
with the development of new analytical tools in conjunction with
advanced high-throughput experimental techniques. To facilitate
predictive biology and crop improvement, there is not just a need
to fully understand physiology at the molecular, cellular, tissue,
and whole-plant levels, but also the cross-level interactions
(Figure 1). This can be achieved using systems biology approaches
that attempt to understand the behavior and functional relation-
ships between multiple elements in the whole system or organism
(Baldazzi et al., 2012; Band et al., 2012; Mitra et al., 2013). The
emergence of bioinformatics has facilitated the analysis of com-
plicated networks, helping to identify novel components and bi-
ological pathways, especially as the vast quantity of experimental
data being generated is difficult or impossible to handle manually.
Mathematical modeling of these pathways in turn drives new
hypotheses and experimental designs, thus improving our
understanding of biochemical processes in planta (Kitano,
2002b; Di Ventura et al., 2006). In the context of computational
systems biology, modeling can be used to identify connections
between elements in a network and to predict the spatio-temporal
dynamics of a system through simulations of model varia-
bles (Kitano, 2002a). In this review, we discuss how mathe-
matical modeling of plant systems, particularly those regulated by
external cues such as light, has helped further our under-
standing of the molecular network structure and their functional
mechanisms.

We focus mainly on simulation-based modeling of dynamical
systems that are fundamentally time dependent. Simulation-
based models have been developed to represent events oc-
curring at a wide range of biological levels, from molecular
regulation up to cell growth, tissue patterning, and plant de-
velopment. The mathematics employed in these models is very
diverse; ordinary differential equations (ODEs) are commonly
used to represent changes with regards to time, but other
variants or a combination of methodologies is sometimes
necessary when considering compartmentalization, pattern of
distribution, and organ shapes (Coen et al., 2004). As a result,
most models do not strictly fall into a particular category.
However, models are usually constructed with the aim of an-
swering specific biological questions, and the models in this
review are grouped accordingly. Using specific case studies, we
highlight how modeling has facilitated the investigation of sev-
eral phenomena in plant systems, with an emphasis on light
signaling and responses to the environment. The models re-
viewed here can be classified in three groups, depending on the
nature of the biological question, including (1) models probing
molecular mechanisms. In this section, we further divide the
case studies into two subcategories: (a) oscillating systems in
which the relevant variables continuously change with time in
repeated cycles. Examples used here include the circadian
clock system that oscillates in a daily cycle of 24 h and the
clock-regulated photoperiod pathway; and (b) nonoscillating
systems wherein variables eventually settle into time-independent
constant values (steady state). In this case, it may be of interest
simply to obtain steady state values or to determine the full-time
evolution of the variables to the steady state, depending on the
application at hand. Here, a mathematical model of phytochrome
signaling is presented. (2) Models investigating cellular growth,
tissue patterning, and organ development include examples ex-
amining the orientation of dividing cells within a growing tissue or
organ, which is fundamental to developmental biology. (3) Models
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focusing on growth and developmental events at the organismal
level form the third category, where we present a phenology
model that studies the effects of photoperiod and temperature on
flowering time.

In this review, we also highlight various aspects that are es-
sential for model construction, including current modeling trends
and limitations. Finally, we offer some perspectives on future
developments in the modeling of plant systems.

MODELS PROBING MOLECULAR MECHANISMS

Oscillating Systems

The Circadian Clock: A Sensor of Time

The circadian clock is an oscillating system that consists of
interlinked feedback loops (Rand et al., 2004; Akman et al., 2010;
Pokhilko et al., 2012) and feed-forward network motifs (Mangan
and Alon, 2003). Due to its complexity, mathematical modeling
has been a convenient way of elucidating the key structures or
network motifs that give rise to observed clock-regulated phe-
nomena. Here, we discuss how mathematical modeling of the
plant circadian clock has helped to further our understanding of
the underlying molecular mechanisms through which plant de-
velopment is regulated by the external environment.

Circadian clocks are biological timing mechanisms that entrain
internal biochemical processes to daily cycles (reviewed in Dunlap,
1999). An entrained circadian clock controls plant responses, for
example, leaf movement, such that they maintain 24-h rhythms in
the absence of external cues like dawn and dusk (Millar et al.,
1995). The duration of a cycle in constant conditions is referred to
as the free-running period (i.e., wild-type circadian rhythms have
a period of ;24 h). It has been shown that the circadian clock
maintains a 24-h period over a range of light qualities, light in-
tensities, and temperatures (Somers et al., 1998; Devlin and
Kay, 2000; Gould et al., 2006; Gould et al., 2013). Hence, the
clock correctly times plant functions despite fluctuations in the
external environment.
To elucidate the circadian clock mechanism, initial studies

identified genetic mutations that alter the free-running pe-
riod of the clock. These screens found that TIMING OF CAB
EXPRESSION1/PSEUDO-RESPONSE REGULATOR1 (TOC1/PRR1)
and CIRCADIAN CLOCK ASSOCIATED1 (CCA1) are key com-
ponents of the circadian clock (Millar et al., 1995; Wang and
Tobin, 1998). In a first approximation of the plant clock system,
CCA1, with its homolog LATE ELONGATED HYPOCOTYL (LHY),
was postulated to repress transcription of TOC1, with TOC1 in
turn activating CCA1/LHY transcription (see Model I, Figure 2A;
Alabadí et al., 2001; Locke et al., 2005). Using transcript profiles
of the clock components and period phenotypes obtained from

Figure 1. Plant Systems Span a Wide Range of Spatio-Temporal Scales.

To cope with a constantly changing environment, plants respond to external factors by triggering and synchronizing a series of activities at different
levels of organization that interact with one another.
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wild-type and transgenic plants grown in different light:dark (di-
urnal) cycles, Locke et al. (2005) constructed a deterministic ODE
model of the simple CCA1/LHY-TOC1 feedback loop and tested
whether this minimal circuit could accurately reproduce observed
clock behaviors. While this simple CCA1/LHY-TOC1 system was
an effective oscillator, it was unable to describe how transcrip-
tional rhythms alter in different photoperiods. Model analysis
predicted that two further components were required to deliver
the requisite behavior: “X,” postulated to mediate TOC1 (PRR1)
activation of CCA1/LHY transcription; and “Y,” to allow the clock
to respond to light in the absence of CCA1/LHY (see Model II,
Figure 2B; Locke et al., 2005). Indeed, with the inclusion of these
components, the model was then able to describe mRNA rhythms
across a range of photoperiods. The similarity between simu-
lated expression rhythms and data identified GIGANTEA (GI) as
a candidate for Y (Locke et al., 2005), a prediction that was later
validated experimentally (Locke et al., 2005, 2006). Further model
developments included the incorporation of other members of
the PRR family (in addition to TOC1). These PRRs were shown

to negatively regulate CCA1/LHY transcription, forming a feedback
loop as PRR9 and PRR7 mRNA are activated by CCA1/LHY
(see Model III, Figure 2C; Farré et al., 2005; Locke et al., 2006;
Nakamichi et al., 2012). By including this new feedback loop, the
model was able to describe the short period rhythms of CCA1
and LHY transcription caused by TOC1 and GI mutations and
the long period phenotypes in prr9;7 loss-of-function mutants
(Locke et al., 2006; Zeilinger et al., 2006).
Recent studies have elucidated the role of EARLY FLOWERING3

(ELF3), ELF4, and LUX ARRHYTHMO (LUX) in the circadian clock
(Nusinow et al., 2011). ELF3 localization to nuclear bodies is
enhanced through interactions with ELF4, where it interacts
with the DNA binding protein LUX (Nusinow et al., 2011; Herrero
et al., 2012). The ELF4-ELF3-LUX complex (hereafter referred to
as the evening complex [EC]) represses transcription of target
genes, such as PRR9 (Dixon et al., 2011; Helfer et al., 2011;
Nusinow et al., 2011). Conversely, transcriptional rhythms of the
EC are altered in cca1 lhy loss-of-function double mutants (Dixon
et al., 2011). Thus, the EC forms part of the clock mechanism. An

Figure 2. Mathematical Models Describing the Circadian Clock and the Photoperiod Pathway in Arabidopsis.

The CCA1/LHY-TOC1 feedback loop (Model I) was extended to include a delay between TOC1 and CCA1/LHY mRNA (X) and a light input independent
of CCA1/LHY (Y) (Model II). Y was identified to be GI (Model III) and X as the EC (Model IV). The circadian clock model has also been extended to include
the photoperiod pathway, which described the dual roles of CDF1 and FKF1 in regulating CO and FT mRNA (Model IV). PIF4 regulates FT mRNA in
a temperature-dependent manner (red); this is not considered in the mathematical model (dotted lines). Orange, circadian clock; green, photoperiod
pathway.
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extended clock model included the role of the EC in place of X,
producing the correct delay between TOC1 and CCA1/LHY tran-
scription in different diurnal cycles (see Model IV, Figure 2D;
Pokhilko et al., 2012).

Analysis of the Pokhilko 2012 model led to a new understanding
of clock circuitry. While this model was able to describe a wide
range of clock properties, it could not explain why rhythms ofCCA1
and LHY transcription are dampened in both toc1 loss-of-function
and TOC1 overexpressing (TOC1-ox) mutants (Alabadí et al., 2001;
Gendron et al., 2012). In clock Models I to III (Figure 2), TOC1 acts
solely as a repressor of CCA1/LHY transcription; however, evalu-
ation of the Pokhilko 2012 model suggested that TOC1 acts as
both an activator and an inhibitor of CCA1/LHY transcription. This
proposal was supported by the observation that TOC1 was shown
to inhibit the transcription of other PRR genes, which in turn repress
CCA1/LHY expression (Huang et al., 2012). Including the TOC1
inhibition of multiple clock components enabled the next iteration of
the clock model to generate similar CCA1/LHY rhythms in both
toc1 and TOC1-ox simulations (see Model IV, Figure 2D; Pokhilko
et al., 2013). Hence, CCA1/LHY regulation is balanced by TOC1
repression and indirect activation resulting from the repression of
PRR genes by TOC1 (Pokhilko et al., 2013).

The examples above have shown how mathematical modeling
has been a useful tool in elucidating the complex network of the
plant circadian clock. The most recent model illustrates that, at its
heart, the clock comprises a three-component repressilator sys-
tem (Pokhilko et al., 2012). In this simplified network architecture,
CCA1/LHY inhibits the accumulation of the EC that prevents
transcription of the PRR components, which in turn inhibit tran-
scription of CCA1/LHY throughout the day. Thus, by defining
molecular pathways mathematically, complex biological systems
can be simplified into their key components or network motifs. As
more becomes known about new and existing core clock com-
ponents (reviewed in Nagel and Kay, 2012), it will be important to
determine the role of these components in the circadian system.
New questions will also arise aimed at understanding the mo-
lecular mechanisms that mediate external signals to the clock. For
example, removing light-signaling pathways by perturbing phy-
tochrome B (phyB) leads to long period phenotypes (Devlin and
Kay, 2000; Somers et al., 1998). Recently, Gould et al. (2013)
analyzed mathematical models of the circadian clock to de-
termine how temperature and blue light regulate the clock
mechanism. The results showed that both temperature and blue
light alter the levels of LHY protein, and this hypothesis was
validated experimentally. The challenge of future circadian clock
models is to understand how other signals from the external en-
vironment interact with the endogenous clock system and
whether this requires the addition of new components, such as
TIME FOR COFFEE, TOPLESS, REVEILLEs, and/or NIGHT LIGHT-
INDUCIBLE AND CLOCK-REGULATEDs that have been found
experimentally to form part of the circadian clock (Hall et al.,
2003; Hsu et al., 2013; Rugnone et al., 2013; Wang et al., 2013).

The Photoperiod Pathway

The circadian clock regulates many genes that play important
roles in plant growth and development (Harmer et al., 2000). Ex-
amples of circadian-regulated processes that affect plant growth

include hypocotyl elongation, opening of stomata, cold acclima-
tion, photosynthetic rate, hormone signaling, and starch turnover
(Dodd et al., 2005; Harmer et al., 2000; Nozue et al., 2007; Legnaioli
et al., 2009; Graf et al., 2010; Dong et al., 2011; Nomoto et al., 2012;
Keily et al., 2013). Here, we look at how the circadian clock enables
plants to perceive daylength, such that they flower and reproduce
in favorable seasonal conditions.
In many species, flowering is strongly influenced by the du-

ration of light (photoperiod) in a diurnal cycle. For example, the
model plant Arabidopsis thaliana is a long-day (LD) plant as it
flowers earlier when grown in longer photoperiods (Corbesier
et al., 1996). The acceleration of flowering in long photoperiods
correlates with elevated expression of FLOWERING LOCUS T
(FT) mRNA (Corbesier et al., 2007). Under these conditions, the
increase in FTmRNA correlates with the abundance of CONSTANS
(CO) protein since it activates FT transcription (Suárez-López
et al., 2001; Imaizumi et al., 2003). Transcription of CO is under
the control of the circadian oscillator (Suárez-López et al., 2001;
Yanovsky and Kay, 2002). Our existing knowledge of the clock,
combined with the availability of highly reproducible quantitative
data, allowed the development of mathematical models that aided
our understanding of photoperiodic flowering (Salazar et al., 2009;
Song et al., 2012).
In LDs, the rhythm of CO mRNA peaks at the end of the

photoperiod, leading to a correlating accumulation of FT mRNA
that is not seen in short days (SDs) (Imaizumi et al., 2003). The
circadian clock regulates this peak in CO transcription indirectly
through GI-dependent degradation of CYCLING DOF FACTOR
(CDF) proteins that suppress CO expression (Imaizumi et al.,
2005; Sawa et al., 2007; Fornara et al., 2009). GI forms a blue
light–dependent protein complex with FLAVIN BINDING, KELCH
REPEAT, F-BOX1 (FKF1) that colocalizes with CDF1 on the CO
promoter, leading to CDF1 degradation (Imaizumi et al., 2005;
Sawa et al., 2007). Hence, in fkf1 mutants, the first peak of CO
mRNA is diminished due to increased levels of CDF1 (Imaizumi
et al., 2005). Using a similar methodology to that used in rep-
resenting the circadian clock system, a deterministic ODE model
of the photoperiod pathway has supported biological ob-
servations that CO protein is not the only regulator of FT tran-
scription (Sawa et al., 2007; Salazar et al., 2009; Song et al.,
2012). An initial model of the photoperiod pathway accurately
described rhythms of CO mRNA in fkf1 mutants (Salazar et al.,
2009). However, the simulations produced too much FT mRNA
compared with experimental data. This suggested that FKF1
plays two roles in the system (i.e., besides regulating CO mRNA,
it also regulates FT mRNA in a feed-forward loop) (Salazar et al.,
2009). This hypothesis was later validated experimentally,
showing FKF1 also stabilizes CO protein that in turn activates FT
mRNA (Song et al., 2012). However, FKF1 is not the only
component to have two roles in the system; both CDF1 and GI
also regulate FT transcription (Sawa et al., 2007; Song et al.,
2012). By updating the Salazar 2009 model to include the feed-
forward network, a range of CDF1-, FKF1-, and CO-related
genetic mutations could then be described (Figure 2D; Song
et al., 2012). In addition, simulations using the updated model
showed that FKF1-regulated stability of CO protein has a larger
effect on FT mRNA levels than FKF1-mediated degradation of
CDF1 (Song et al., 2012). There is also a direct regulation by the
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clock of CDF1 and FKF1 transcription (Nakamichi et al., 2007;
Niwa et al., 2007). Current evidence suggests that the tran-
scription of CDF1 is controlled by the PRR proteins, while FKF1
mRNA rhythms closely match those of GI (Nakamichi et al.,
2007, 2012; Niwa et al., 2007); these are not included in the
Song 2012 model. Future models must be extended to include
CDF1 and FKF1 regulation to provide a fuller understanding of
how the circadian clock regulates photoperiodic flowering.

Besides photoperiod, temperature is another environmental
factor that regulates flowering in A. thaliana. Recently, Kumar
et al. (2012) investigated temperature regulation of flowering
through transcriptional activation of FT. In this study, PHYTO-
CHROME INTERACTING FACTOR4 (PIF4) was found to activate
transcription of FT across the warm temperature range due to
altered chromatin dynamics (Figure 2D). At 22°C, H2A.Z nucleo-
somes prevent the binding of PIF4 to the FT promoter preventing
transcriptional activation. However, at 27°C, H2A.Z is absent from
the FT promoter, allowing PIF4 to bind and activate transcription,
accelerating flowering in warm temperatures (Kumar et al., 2012).
Interestingly, this phenomenon has been proposed to occur
independently of CO activation of FT since these results were
obtained from experiments conducted in SDs (Balasubramanian
et al., 2006; Kumar et al., 2012). This observation provides a useful
hypothesis that can be further explored both in silico and experi-
mentally. By analyzing how temperature regulates flowering in LD
conditions, it may be possible to determine how the temperature
and photoperiodic regulation of FT transcription, and flowering, are
integrated. This would result in a model that can explain thermo-
photoperiodic flowering across a wide range of environmental
conditions.

In general, mathematical models that describe dynamic mo-
lecular processes can be used to help understand what is ob-
served experimentally (e.g., by correlating gene expression with
observable phenotypes) and to further enhance our understanding
of the molecular mechanisms in many biological systems. Here, in
the example of the photoperiodic response, we used the circadian
clock model as a module in a larger system of the flowering
pathway. A recent study has linked simulated FT expression level to
flowering time in Arabidopsis halleri, a perennial relative of A. thaliana
(Satake et al., 2013). Thus, there is potential in connecting molec-
ular models to phenology or flowering models, which are presented
in a later section.

A Nonoscillating System: Phytochrome Activation by
Red Light

In this section, we consider a case study that examines the mo-
lecular processes involved in red light activation of the phyto-
chrome photoreceptor (Rausenberger et al., 2010). A novel aspect
of this study was the multiscale approach that linked photore-
ceptor protein dynamics (a molecular level description) to hypo-
cotyl length (a common macroscopic physiological measurement
in light-signaling studies). In general, given the large range of
spatio-temporal scales in plant systems (Figure 1), it is common to
partition them into fast (lower level of organization) and slow
(higher level) subsystems. The fast subsystem is characterized
by timescales that are much shorter than the slow subsystem;
hence, the former is approximately in steady state. In this case, the

concentration of each component in the fast subsystem can be
modeled as constant over time (i.e., the change in amount is as-
sumed negligible). On the other hand, the slower subsystem
continues to change with time. In this case study, the red light–
signaling pathway is modeled as a fast subsystem, and hy-
pocotyl elongation is considered to occur at a slower timescale
(Rausenberger et al., 2010).
Plants can sense and react to both the quality (emitted colors)

and intensity of light. The shade avoidance syndrome is a notable
example of the response to light quality. Here, a group of spe-
cialized phytochrome photoreceptors detect alterations in the
ratio of far-red to red light in vegetation-rich habitats (Keller et al.,
2011). In A. thaliana, there are five red and far-red light-sensing
phytochrome A (phyA) to phyE (Mathews and Sharrock, 1997).
Phytochromes photoconvert between an inactive red light–absorbing
state, Pr, and an active far-red-light–absorbing state, Pfr (Chen
et al., 2004). The relative amount of active Pfr is therefore directly
influenced by the proportion of red:far-red light, which in turn
reflects the proximity of neighboring plants (Li et al., 2011). In
A. thaliana, phyB is a principal regulator of light-induced hypo-
cotyl inhibition, a well-studied response that is fluence rate de-
pendent. When grown in the dark A. thaliana seedlings have very
long hypocotyls, as under these conditions phyB is usually in-
active. The introduction of light at increasing intensities leads to
elevated levels of active phyB and an incremental inhibition of
hypocotyl elongation. A review of phytochrome behavior can be
found in Franklin and Quail (2010).
The idea of a reversible photoreaction was first postulated by

Borthwick et al. (1952), and since then there have been numerous
attempts to understand the phytochrome signaling mechanism. In
the simplest realistic representation of the red light–signaling
pathway, phyB is formed in the cytosol in its inactive Pr state, and
upon activation by red light, it is photoconverted into the active
Pfr state; far-red light photoconverts Pfr back into Pr (Figure 3A).
The conversion from active to inactive phyB can also occur
through a light-independent process known as dark reversion
(thick black arrow in Figure 3A) (Linschitz and Kasche, 1966).
A further evolution of the basic postulation was the separation

of phyB into cytosolic and nuclear pools (i.e., Pfr
c and Pfr

n where
the superscripts “c” and “n” refer to the cytosol and nuclear, re-
spectively); this is because phyB is formed in the cytosol, and
once in its active form, it is translocated into the nucleus (Figure
3B; Yamaguchi et al., 1999). Within the nucleus, phyB forms two
types of phytochrome nuclear bodies: transient phytochrome
nuclear bodies, which occur within minutes of changes in light
quality, and longer lasting photostable phyB-containing nuclear
bodies (Chen, 2008). A compartmental model is therefore required
to more accurately represent signaling from phyB. Based on
these observations, a multiscale compartmental mathematical
model of the phyB pathway was constructed, linking molecular
events to hypocotyl elongation (Figure 3C; Rausenberger et al.,
2010). This model was written as a system of deterministic ODEs,
with each equation representing the change in concentration of
one molecular player in the model (e.g., nuclear Pfr) over time. It
also included one additional equation linking the amount of active
phytochrome to the hypocotyl growth rate. An implicit assump-
tion in the use of such models is that each of the molecular
players is distributed uniformly within the compartments modeled
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(i.e., the cytosol and the nucleus) (Grima and Schnell, 2008). The
model was solved in steady state conditions since the measure-
ments of hypocotyl length were obtained when the phyB system
had attained a steady state level (Rausenberger et al., 2010). So-
lution of the model then explicitly reveals how the levels of all the
components are related to one another and allows one to deduce
precisely how hypocotyl elongation is related to light intensity.

The kinetic parameters in the Rausenberger 2010 model were
estimated by fitting it to multiple data sets of phyB levels and
hypocotyl length. This method proved effective as the model
provides a quantitatively accurate prediction of how the hypo-
cotyl length depends on the total amount of phyB and, thus, on
the red light intensity. Although this is a basic photobiological
observation, nevertheless the power of the modeling approach
is that (1) it can recapitulate this from a molecular level model
and (2) it allows easy manipulation of individual parameters to
investigate the sensitivity of the hypocotyl growth rate to the
various biochemical processes orchestrating the fluence re-
sponse. In particular, Rausenberger et al. (2010) found that
changing the rates of formation and degradation of Pfr nuclear
bodies have a significant effect on the growth rate, indicating the
importance these entities have on phyB signaling. The simulation-
based analysis also showed that, in order to recreate the classic
fluence response curve, an additional inactivation of active phyB
is needed, either through dark reversion and/or the formation of
nuclear bodies. These results are difficult to infer from a purely
experimental approach, which indeed points to the importance

and need of systems-based approaches to further biological
discovery.
One simplifying assumption of the Rausenberger 2010 model

is that phyB can be directly linked to hypocotyl elongation;
however, it is known that phyB does not work in isolation. To
further our understanding of how suppression of hypocotyl
elongation occurs in red light, it will be necessary to extend the
Rausenberger 2010 model to incorporate downstream compo-
nents. The transcription factor family PIFs are key regulators of
phyB signaling that promote hypocotyl elongation (reviewed in
Leivar and Monte, 2014). When phyB is active, an interaction
with PIF proteins rapidly induces their phosphorylation and
triggers their degradation; conversely, PIF induces proteolytic
degradation of phyB over longer timescales (Al-Sady et al.,
2008; Jang et al., 2010). The effect of this on phyB signaling, and
therefore the overall hypocotyl elongation, is difficult to predict;
however, we anticipate that mathematical modeling will consti-
tute a useful tool to examine the nonintuitive effects of this
mutual degradation.
Another example of a nonoscillating model is that by Rausenberger

et al. (2011), which showed that the shifting of peak in the phyA
action spectrum from red to far red is due to photocycling of the
phyA receptor between its Pr and Pfr forms. The significance of
mathematical modeling is apparent when one considers that this
shifting phenomenon has been known for over half a century
(Mohr, 1957), but experimental studies failed to link it to known
molecular components or events.

Figure 3. Models Describing the phyB Signaling Mechanism.

(A) and (B) The basic model for the photoconversion of phyB (A), which was extended to a compartmental model (B).
(C) The model was later extended to include the formation and degradation of nuclear bodies. Red and far-red-light–dependent reactions are indicated
by a red star and an orange star, respectively. Thick black arrows represent dark reversion.
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Here, we have shown how modeling provides insights into
the molecular network structures of both oscillating and non-
oscillating systems. As illustrated in our case studies, these
molecular pathways regulate events at higher levels, such as
flowering time and hypocotyl elongation. In the next section, we
look at models designed for studying tissue patterns and organ
shapes.

Models Investigating Cell Growth, Tissue Patterning, and
Organ Development

Plants have distinctive macroscopic features, such as leaf shape
and shoot orientation. Light affects plant architecture in a number
of ways. Examples include the orientation of organ growth toward
or away from light in a behavior known as phototropism and the
shade avoidance response to encroaching neighbor plants (see
previous section on phytochrome signaling and a review by
Casal, 2013). Organ development is a complex process, involving
the coordination of gene expression, cell growth, and cell division
across both time and space. This coordination originates at the
microscopic level, within and between individual cells, and results
in features such as the budding of a leaf or formation of a root tip.
There has been much work in recent years in establishing the
mechanistic bases of plant development at the cellular level, and
the complex interactions involved in these systems have neces-
sitated substantial use of mathematical modeling techniques.
Furthermore, the modeling frameworks developed in the process
are expected to be invaluable in investigating more complicated
signaling, such as the direct and indirect effects of light on plant
development. In this section, we discuss models of cellular and
tissue development that span a range of complexity levels, from
biomechanical models that do not involve molecular components,
to models that incorporate complex gene regulatory networks.

Plant Development under Physical Constraints

Cells in multicellular organisms are subject to a variety of physical
and geometrical constraints, which have important consequences
for development (Figure 4A) (Mirabet et al., 2011). Mathematical
modeling of cell growth under these constraints provides a mini-
mal framework within which hypotheses can be tested and re-
fined. The fact that all cells are subject to the same physical laws
has allowed generic modeling frameworks to be developed in this
context and general theories for cell growth and division to be
suggested (Besson and Dumais, 2011). This has been invaluable,
as biomechanical modeling methodologies originally developed
and applied to one system have been reapplied to many others.
These methodologies differ widely, but a common starting point is
the assumption that cell walls can be modeled as elastic mem-
branes. Here, we present some salient examples of modeling
studies in this area, and the interested reader is referred to
comprehensive reviews of the field (Chickarmane et al., 2010;
Mirabet et al., 2011).

One recent modeling study of cell growth and division consid-
ered how the distribution of cell sizes in the sepal epidermis of A.
thaliana is regulated by patterns of endoreduplication (Roeder
et al., 2010). The sepal epidermis was chosen in this case because
of its accessibility to live imaging and because the rectangular

geometry of the cells makes them amenable to automated image
processing. A model of cell growth and division in the epidermis
was developed, under simple assumptions about the orientation
of division planes and the stochasticity of cell division. This model
was then integrated with a stochastic model of cell cycle switching

Figure 4. Modeling Plant Development and Morphology.

(A) Cell geometry, growth, expansion, and division place physical con-
straints on any model of plant organ morphogenesis. Models that con-
sider only the implications of these constraints on plant growth have in
some cases been able to suggest simple physical mechanisms for
complex organ morphologies.
(B) Spatial distributions of morphogens (such as auxin) underlie many
developmental processes. Models of active transport and diffusion of
these factors allow the mechanisms of pattern formation to be in-
vestigated.
(C) Analysis of dose–response curves generated from both quantitation
and model simulation are often useful in revealing the regulatory network
of a system. Spatial models of gene and signaling networks allow hy-
potheses concerning the molecular mechanisms of morphogenesis to be
investigated and potentially linked to models of other scales.
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between mitotic and endoreduplicating states, in which, at the end
of each cycle, cells were assumed either to divide mitotically or to
enter an endoreduplicating state. The probability of transitioning
to an endoreduplicating state was determined by fitting the model
to the measured distributions of cell ploidy. The resulting model
was able to generate a complete sepal epidermis with the appro-
priate distribution of cell sizes and thus link the observed patterns
of endoreduplication with the size of individual cells in this tissue,
providing a simple mechanistic explanation for the complex phe-
notype observed. Similar techniques have been used to study the
coupling of growth and division of cells in Coleocheate scutata,
a freshwater green alga (Dupuy et al., 2010). This model highlighted
an important role for the plane orientation of cell division in de-
termining cell shape. In addition, biomechanical modeling has also
been applied to more complex tissues, such as the shoot apical
meristem. In this case, mathematical modeling of the tissue me-
chanics demonstrated how cell growth is modulated by mechan-
ical forces (Hamant et al., 2008; Kierzkowski et al., 2012).

The above examples show how models that apply simple
physical and geometrical rules to a growing tissue can be used to
understand morphogenesis in a wide variety of cases. In cases
where these factors are not the primary driving force for de-
velopment, models of this type still provide a framework within
which additional forms of regulation, such as gene regulatory
networks, may be included. In the context of developing tissues,
the molecular components responsible for growth may have
distinct spatial distributions, both between different cells and
within single cells. These spatial distributions may respond to
physical stresses resulting from growth and, in turn, may control
the direction and rate of growth. The two most commonly applied
modeling methodologies in this context are compartmentalized
ODEs and reaction-diffusion models. In compartmentalized ODE
models, the molecular dynamics of individual cells are coupled to
one another by intercellular transport. By contrast, in reaction-
diffusion models, individual cells are not represented, and the
tissue is treated as a single continuum in which species are free to
diffuse. In this case, partial differential equations can be used to
represent changes with regards to both time and space.

A framework for understanding the link between growth and
tissue polarization was originally presented by Coen et al. (2004)
and has been developed considerably since (Green et al., 2010;
Kennaway et al., 2011). In this framework, both the orientations
and rates of cell growth are regulated by spatial distributions of
hypothetical factors, in what may be considered a minimalistic
representation of the molecular mechanisms underlying polarized
tissue growth. One example where this methodology has been
applied is in determining leaf morphology of A. thaliana (Kuchen
et al., 2012). Here, iteration between imaging experiments and
modeling led to a model in which the direction of growth was
directed by local growth orientations. This model reproduced
both the overall morphology of a growing leaf and the growth
orientation of individual cells. The model also correctly predicted
the dynamics of recovering growth in a leaf excised of its distal
tip. This demonstrated that the apparent regeneration of the distal
tip is not a consequence of a growth response to the cut but is
rather a consequence of continued growth in the leaf primordium.

This study was recently complemented by modeling of petal
morphology in A. thaliana (Schiessl et al., 2012; Sauret-Güeto

et al., 2013). Similar rules were expected to apply to petal and
leaf development. Indeed, an initial model found that the basic
shape of petals, with their broad distal tip, could be described by
a similar mechanism to the leaf model. However, clonal analysis
demonstrated that the local orientations of growth could not be
described by this model. An additional polarizing component
was introduced to the model that stimulated divergent ori-
entations of growth in distal cells. Comparison of phenotypes
produced by transgenic plants to simulations with reduced ex-
pression of hypothetical model components suggested that the
transcription factor JAGGED (JAG) might regulate divergent
growth at the distal tip. Further experiments showed that the
pattern of JAG expression in the petal at different stages of
growth is consistent with it playing this role in development.

Connecting Tissue/Organ Level Phenomena to
Molecular Mechanisms

The above examples show how mathematical modeling has been
used to understand development in cases where the molecular
and genetic mechanisms are not well understood. In some cases,
however, parts of the mechanism are understood, and quantita-
tive experimental measurements are available at the molecular
level, as was the case for the construction of phyB and clock
models presented in earlier sections. A widely studied system in
this context is auxin transport and polarity, which has been sug-
gested to direct development in a variety of ways, including root
initiation and leaf vasculature development. Auxin has been
shown to move through plant tissue under directed active trans-
port (Figure 4B). This flux is under the control of the polar distri-
bution of auxin import and export proteins on cell membranes. For
example, PIN proteins are responsible for directed auxin efflux
from cells, and the pattern of PIN polarity orientation in a tissue
directs the distribution of auxin in the tissue (Wisniewska et al.,
2006). PIN proteins are, in turn, regulated by auxin at several levels
(Geldner et al., 2001; Vieten et al., 2005). Mathematical modeling
has been applied to understand the resulting feedback regulation
between auxin transport and PINs across tissues, as has been
well reviewed elsewhere (Garnett et al., 2010; Band et al., 2012).
Modeling of gene regulatory networks in this context can also

be found in studies of tissue patterning, in which the distribution of
differentiated cells in a tissue is studied (Torii, 2012). One such
example is found in the leaf epidermis, where pavement cells are
interspersed by distinctive organization of trichomes. The regula-
tory mechanisms underlying this pattern of cell differentiation have
been widely studied, and mathematical modeling approaches
have been used to explain the spatial arrangements of cells ob-
served in the epidermis of wild-type plants and various mutants.
For example, a basic framework has been developed considering
the role of freely diffusing inhibitors of differentiation in tandemwith
nondiffusing activators (Digiuni et al., 2008). Similar approaches
may be taken to further understand other tissue patterning pro-
cesses for which some molecular mechanisms are understood,
such as stomatal formation and patterning (Torii, 2012).
A number of the examples presented here have employed

minimalistic models in which no explicit representation of mo-
lecular regulators was included. The success of such models in
describing phenomena and guiding experiments demonstrates
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the utility of modeling in cases where detailed understanding of
regulation is not available, but for which high-quality quantitative
measurements of phenomena can still be made. Indeed, recent
developments in this area have been strongly driven by improve-
ments in imaging technology (Fernandez et al., 2010; Federici
et al., 2012). Further technological improvements will bring im-
proved quantitation and opportunities for further modeling of
molecular systems underpinning spatial development of A. thaliana
(Figure 4C). In particular, approaches that integrate modeling of
tissue mechanics, growth, and molecular regulation promise to
aid further study of these systems (Barrio et al., 2013) and con-
tribute toward the development of whole-plant models, as dis-
cussed in the next section.

Models Focusing on Growth and Developmental Events at
the Organismal Level

The models presented in the previous sections focus on events at
the molecular, cellular, and tissue levels and were facilitated by the
advancement in molecular and systems biology. In this section,
we look at mathematical models that simulate the growth and/or
developmental processes at the organismal level. This group of
models has a long history and has practical applications, such as
the prediction of crop growth and development. Some contem-
porary crop models now incorporate genetic information that
improves predictive power, though no molecular mechanisms are
represented explicitly. This modeling approach has also been
applied to noncrop model species such as A. thaliana. Therefore,
in this section, we give a brief background review of early crop
models and then discuss the application of contemporary crop
modeling approaches in A. thaliana studies, which have increased
our understanding of plant growth and development.

Early Crop Models

The concept used in crop models dates back to the 18th cen-
tury, when René Réaumur observed that developmental events
such as flowering occurred once plants had experienced a cu-
mulative daily temperature that exceeded a critical threshold
(Robertson, 1968). This suggested that the speed of plant de-
velopment is positively correlated with temperature, though later
studies showed that above a critical temperature plant re-
sponses are impaired (Haniu et al., 1983; Summerfield et al.,
1992; Dingkuhn et al., 1995). Following the discovery of pho-
toperiodism, the effect of temperature on plant development
was found to depend on daylength (Robertson, 1968). These
observations led to the creation of (photo) thermal-time (also
commonly known as degree-day) phenology models that are
widely used in crop modeling (Weir et al., 1984; Brisson et al.,
2003; Stockle et al., 2003; Dingkuhn et al., 2008). More recent
thermal-time models incorporate additional factors, such as the
effect of winter chilling (vernalization) (Wang and Engel, 1998;
Chuine, 2000; Harrington et al., 2010).

Growth processes can also be considered in crop models, by
simulating net photosynthetic production and the allocation of
assimilated carbon to different organs. One of the break-
throughs that facilitated growth modeling was the Farquhar
model that simulates photosynthesis in C3 plants (Farquhar

et al., 1980). This model contains kinetic details of both the light-
dependent electron transport and carboxylation processes,
which are two rate-limiting factors determining carbon assimi-
lation in plants. Functional-structural plant models, which stem
from early plant architectural models, have more recently emerged
to incorporate the effects of shoot structure on light interception
and, consequently, biomass available for the growth of individual
organ and the whole plant (Lindenmayer, 1968a, 1968b; Honda,
1971; Jaeger and De Reffye, 1992; Yan et al., 2004; Godin and
Sinoquet, 2005; Vos et al., 2007).

Applying Contemporary Crop Modeling Approaches
to A. thaliana

Advances in molecular biology have helped shape approaches
to contemporary crop modeling. Information on the genetic
control of plant traits is increasingly being considered in crop
models. One of the earliest efforts was a gene-based crop
simulation model of the dry bean Phaseolus vulgaris, which used
genotype-specific parameter values to represent different culti-
vars (White and Hoogenboom, 1996). Some studies have also
attempted to link information from quantitative trait loci analyses
to model parameters to incorporate genotype-phenotype rela-
tionships into crop models (Yin et al., 2000a; Letort et al., 2008;
Xu et al., 2011). By incorporating such links, statistics from the
quantitative trait loci analysis can partly remove the random
errors associated with model parameters, thus improving model
prediction of yield differences among different inbred lines (Yin
et al., 2000b, 2003). These exemplar studies demonstrated how
physiological modeling and genetic mapping can be combined
to resolve the genotype 3 environment interactions, which may
aid future plant breeding efforts.
The crop models discussed above have been used mainly

in either agricultural or ecosystem research. However, many
knowledge-swapping efforts have recently been initiated between
the applied and fundamental plant research communities. For
example, several growth, architectural, and functional-structural
models for A. thaliana have been developed using crop modeling
techniques (Mündermann et al., 2005; Rasse and Tocquin, 2006;
Christophe et al., 2008). These studies have the shared advantage
of being constructed using the high amounts of data produced by
studies of A. thaliana and the well-established concepts of crop
modeling. This was demonstrated recently by a gene-based
thermal-time model that predicted flowering time in A. thaliana
(Wilczek et al., 2009). This model was able to reproduce the ob-
served flowering phenotypes of different A. thaliana genotypes
grown in various seasons and latitudes (Wilczek et al., 2009). As
an LD plant, high temperatures coupled with the long photoperiod
during the summer promotes early flowering in A. thaliana. As
summer turns into autumn, daylength decreases and temperature
lowers. Therefore, the later in the year plants germinate, the longer
they take to flower. Interestingly, the model predicted the exis-
tence of a narrow window in which the timing of germination
acutely affects the plant life cycle. Plants that germinate slightly
later within this sensitive window may switch abruptly from the
summer-annual (early flowering) to the winter-annual (late flow-
ering) life cycle; this behavior was predicted for all the genotypes
used in the study, though the window size varied with genotypes
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(Wilczek et al., 2009). These effects of germination timing on plant
development were later confirmed with experimental data from
a series of repeated field plantings. This is a good example of how
experimental data are required to construct a model, and model
prediction can in turn drive new hypotheses for testing in the lab
and the field.

Modeling studies do not necessarily end at the model-
development stage. We can also learn new information from
analyzing the performance and behavior of the model itself. When
the A. thaliana flowering model was first developed, it was found
that model accuracy was higher when only day temperatures
were considered in the thermal-time accumulation (Wilczek et al.,
2009). In a more recent study, model accuracy was further ana-
lyzed by considering the different seasons and plantings sepa-
rately, along with the associated meteorological data (Chew et al.,
2012). It was subsequently found that the effect of night tem-
peratures on flowering time depends on the season. During
summer months, temperature peaks at daytime and drops at
night. In agreement with the previous study, analysis for summer
plantings showed good model accuracy even though night tem-
peratures were discounted in the accumulation of thermal-time.
This suggested that night temperature in this period has very little
effect on flowering time. However, the diurnal variation in tem-
perature becomes less predictable in the autumn and winter.
When night temperatures were included in the new study, albeit
with a lower effectiveness relative to daytime temperatures, model
performance was improved across seasons and plantings (Chew
et al., 2012). These results reflected the switch from a photoperiod-
dependent pathway to the gibberellin pathway, which is known
to promote flowering in SDs and display different sensitivity to
day and night temperatures (Wilson et al., 1992; Moon et al., 2003;
Stavang et al., 2007, 2009). The different day/night temperature
sensitivities also mirror the observed circadian gating of tem-
perature response in plants (Rikin et al., 1993; Fowler et al., 2005;
Espinoza et al., 2010).

In an attempt to extend the flowering model to include the
role of photoreceptors, Chew et al. (2012) also observed an in-
volvement of phyB in the gating of temperature response. phyB is
known to delay flowering time by regulating degradation of CO
protein in the photoperiod pathway (see earlier section), and
a phyB lack-of-function mutant displays a temperature-dependent
early-flowering phenotype (Halliday et al., 2003; Halliday and
Whitelam, 2003). Interestingly, the model fit the field data of the
phyB photoreceptor mutant only when the effectiveness of tem-
perature was similar both during the day and the night, in addition
to changing the model parameters for photoperiod response. The
result therefore suggested a possible gating mechanism by which
phyB mediates the temperature signal to control flowering. This
hypothesis was made possible by a combination of experimental
and modeling efforts and good physiological understanding of
the photoreceptors in A. thaliana.

The few examples presented above demonstrate how mathe-
matical modeling can facilitate the discovery of emergent prop-
erties. Some simulated-driven hypotheses have been confirmed
experimentally, some are awaiting further tests, while others may
be difficult to validate at present due to technical limitations. In
addition, some models require various types of high-throughput data.
In this respect, the rapid development of large-scale phenotyping

technologies may provide part of the solution (Granier et al., 2006;
Reuzeau et al., 2006; Tisné et al., 2013).

SUMMARY AND FUTURE PROSPECTS

We looked at different examples of mathematical models that
cover various levels of biological organization, systems, and scales.
As demonstrated in our examples, simulation-based models are
useful in identifying new network components and interactions that
are not always intuitive from experimental data. The model of phyB
signaling pathway has identified reactions that are important for the
regulation of physiological response (Rausenberger et al., 2010);
a model of petal morphology suggested the involvement of
a transcription factor (later identified as JAG) in regulating petal tip
growth (Sauret-Güeto et al., 2013); the gene dynamic model of the
circadian clock proposed two hypothetical components whose
identities were later confirmed experimentally as GI and the EC
(Dixon et al., 2011; Locke et al., 2005, 2006); and when this cir-
cadian clock model was linked to the flowering pathway, model
simulation suggested additional roles for FKF1, CDF1, and ELF3
(Salazar et al., 2009; Song et al., 2012). Associating gene functions
to phenology models, which are generally used to predict crop
development, can also be useful. This was shown in the thermal-
time flowering model, which identified a possible gating mecha-
nism of temperature by phyB (Chew et al., 2012). Future models
that link, for example, the flowering model (Chew et al., 2012) to the
models of phyB signaling (Rausenberger et al., 2010) and clock-
regulated photoperiod pathway (Salazar et al., 2009; Song et al.,
2012) may reveal more information regarding plant behavior under
varying conditions and the underlying mechanisms.
The examples discussed above are all very different, leading to

the question of whether they show any similarities or specific
properties that made them amenable to mathematical analysis.
Preliminary understanding of a system is very helpful in forming
the basic structure of a model. The existence of an active and
inactive form of phyB, for example, was important in conceiving
the Rausenberger 2010model of phytochrome action (Rausenberger
et al., 2010). Knowing the key components of a system also
plays a vital role, as in the case of the earliest plant clock
model, but it is not always a necessity (Alabadí et al., 2001; Locke
et al., 2005). One may develop a minimal model consisting only of
hypothetical components, as illustrated in the leaf tissue growth
model (Green et al., 2010; Kennaway et al., 2011). It is also
possible to model a mechanism by applying similar rules that
describe a related system. An example of this is a petal de-
velopment model, which adopted the same principles used in leaf
development (Kuchen et al., 2012; Sauret-Güeto et al., 2013).
Some general rules are available, such as the notable L-system,
which is useful in describing systems consisting of a repetitive
growth unit like a cell or a branch segment (Lindenmayer, 1968a,
1968b). General structures also exist for different classes of os-
cillating systems (Purcell et al., 2010). A simple repressilator
structure, which is a ring made up of three inhibitors, is embedded
within the complex circuit of the plant clock model (Model IV,
Figure 2D; Pokhilko et al., 2012). This class of repressilator ring
system was first synthetically constructed in Escherichia coli but
has also been found in mammalian circadian clocks (Elowitz and
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Leibler, 2000; Hogenesch and Ueda, 2011; Ukai-Tadenuma et al.,
2011). The implication here is that while different techniques and
certain assumptions may be required, modeling can be applied
to a wide range of biological systems. This is encouraging,
especially in systems for which models do not yet exist but
would benefit from a theoretical understanding of the mechanism
involved.

The Data Gap

A central requirement in developing a useful mathematical model
is data availability. Experimental data are essential for both model
training and validation. One big limitation in molecular network
modeling is the lack of quantified protein data, particularly time-
resolved data. As a consequence, some dynamic models like the
circadian clock adopt an arbitrary unit for the expression of
specific components (i.e., the simulated concentration levels are
only relative values and do not directly relate to the actual con-
centrations or copy numbers of different components seen in
planta) (Locke et al., 2005, 2006; Pokhilko et al., 2012). For
models investigating cellular and tissue development, obtaining
high-quality images can be a big challenge. Image analysis
presents another technical difficulty, as analysis tools to acquire
the desired information do not always exist. Physiological data
such as hypocotyl length and cotyledon area are relatively
abundant, especially in A. thaliana. However, there is a lack of
data from older plants which is necessary for a comprehensive
understanding of plant growth and development, but collecting
these data on a large scale can be laborious and time-consuming.

Realizing the need for high-throughput data collection, many
new and improved phenotyping tools have been developed re-
cently. Novel automated systems are now able to capture the
image of dark-grown or light-grown seedlings within a short
timescale in parallel with molecular events (Miller et al., 2007;
Wang et al., 2009; Cole et al., 2011). These nondestructive sys-
tems are equipped with computer algorithms to analyze the im-
ages and calculate hypocotyl length, apical hook opening, and
phototropic bending. For older plants, some automated platforms
can capture the image and weigh each plant (Granier et al., 2006;
Reuzeau et al., 2006; Tisné et al., 2013). Besides the whole-plant
monitoring systems described above, high-resolution imaging
technologies at the organ and cellular level are also under rapid
development. Cell-segmented 3D images of the whole organ can
be acquired by reconstructing confocal microscopic images
taken at multiple angles (Fernandez et al., 2010). An automated in
planta cytometric method has also been developed, where gene
activity and cellular geometry such as cell topology, size, and
shape can be simultaneously monitored and analyzed quantita-
tively (Federici et al., 2012). Together, these phenotyping plat-
forms can increase the quality and quantity of data generated at
multiple levels of cellular organization. A comprehensive review of
these systems is provided by Dhondt et al. (2013).

Experimental design is another important aspect to be con-
sidered. Experimental conditions, sampling frequency, and the
choice of control(s) depend on the objective(s) of studies, driven
by hypotheses supported by preliminary or previous results. As
illustrated in our examples, modeling can generate nonintuitive
hypotheses, but the design of experiments and the quality of data

play a big role in determining the success of hypothesis testing.
Communication between modelers and experimentalists is there-
fore important to ensure data efficacy. Experimentalists should
understand the modeling results that lead to the hypotheses,
including any model assumptions and limitations. In this regard,
sensitivity and uncertainty analyses have been valuable for un-
derstanding model robustness and to identify the boundaries
beyond which predictions should be treated with caution (Dietze
et al., 2013). Modelers, on the other hand, need to understand
the technologies behind the measurement techniques and their
limitations to avoid overinterpretation of data. In addition, ex-
changing experimental and simulated observations, including
those not directly related to the hypothesis being tested, may
trigger new ideas and improve understanding between the two
communities.

The Future in Plant Systems Modeling

Global concerns regarding the impact of climate change have
generated various research activities to identify alternatives for
improving plant yield and productivity. With overall crop yields
predicted to decline with climate change, renewed efforts are
needed that bring together studies addressing the interaction
between plants and the environment at all levels of organization
(Tao et al., 2006; Estrella et al., 2007; Luterbacher et al., 2007).
Modeling of molecular networks in the context of systems

biology will continue with the development of more advanced
experimental and analytical tools. In recent years, it has become
possible to obtain data with near or single cell resolution for
various types of cells (Elowitz et al., 2002; Suter et al., 2011;
Wenden et al., 2012), facilitating the study of the intricate details
of intracellular biochemical processes, in particular the re-
lationship between cellular-level and population-level phenom-
ena and the role played by intercellular heterogeneity. The
modeling of processes at the cellular or subcellular level pres-
ents distinct challenges; the low copy number of many mole-
cular players inside cells (Grima and Schnell, 2008) means that
stochasticity must be considered. The models described in this
review are mostly deterministic and, hence, ill-suited to tackle
such challenges; indeed, it has been shown that some phe-
nomena cannot be captured even qualitatively by deterministic
approaches (Ramaswamy et al., 2012). Stochastic modeling
frameworks have been developed in the past few decades,
notably the stochastic simulation algorithm (Gillespie, 1977) and
its various approximations (Thomas et al., 2012), which have led
to means to efficiently probe single-cell dynamics. Examples of
stochastic modeling in plants are relatively few (compared with
deterministic modeling), but there is clearly a growing trend
(Kang et al., 2008; Guerriero et al., 2012), which is necessitated
by the acquisition of ever more high-resolution data. In addition,
advances in plant systems biology are likely to follow the lead of
a recently published whole-cell computational model for the
bacteria Mycoplasma genitalium that considers the whole ge-
nome (Karr et al., 2012). However, two main challenges lie ahead
in developing such a model for plant systems. First, even though
the genomes of Arabidopsis and various crop species such as
rice (Oryza sativa), maize (Zea mays), and soybean (Glycine max)
have been fully sequenced, there are still many gene functions

Mathematical Models of Plant Systems 11 of 16



yet to be discovered (Goff et al., 2002; Kaul et al., 2000; Matsumoto
et al., 2005; Schmutz et al., 2010; Schnable et al., 2009; Yu
et al., 2002). Second, plants are complex multicellular organ-
isms with many biological, chemical, and physical processes
that overlap and interact with each other over both temporal
and spatial scales.

Application of modeling techniques from engineering and
physical sciences will help in understanding how a suite of dif-
ferent biological, physical, and chemical signals interact and
regulate plant growth and development. Indeed, these techniques
are already used in plant modeling, such as to describe water,
gas, and nutrient transport in the fruit, root, and stem systems
(De Schepper and Steppe, 2010; Ho et al., 2010). The next step is
then to combine various different techniques and build a compre-
hensive model that incorporates all the genetic information. There
is also potential in integrating existing models using a modular ap-
proach, as practiced in climate modeling (Collins et al., 2006). We
have seen from the case studies presented earlier that a number
of models have the potential to be linked. In the future, there is
likely to be greater coordination between modelers and plant bi-
ologists and more knowledge transfer between model species
such as Arabidopsis and crops. These developments will expedite
the links between molecular-level knowledge and system-level
understanding, allowing the simulation of plant phenotypes in a
changing environment to aid crop improvement, advances in
fundamental plant biology, and the design of genetic circuits to
facilitate synthetic biology (Kitano, 2002a; Collins, 2012).
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